A Note on a Rapid Grid Search Method for Solving Dynamic Programming Problems in Economics
نویسندگان
چکیده
We introduce a rapid grid search method in solving the dynamic programming problems in economics. Compared to mainstream grid search methods, by using local information of the Bellman equation, this method can significantly increase the efficiency in solving dynamic programming problems by reducing the grid points searched in the control space.
منابع مشابه
Mathematical Programming Models for Solving Unequal-Sized Facilities Layout Problems - a Generic Search Method
This paper present unequal-sized facilities layout solutions generated by a genetic search program named LADEGA (Layout Design using a Genetic Algorithm). The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computa...
متن کاملA NOTE ON THE ZIMMERMANN METHOD FOR SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS
There are several methods for solving fuzzy linear programming (FLP)problems. When the constraints and/or the objective function are fuzzy, the methodsproposed by Zimmermann, Verdegay, Chanas and Werners are used more often thanthe others. In the Zimmerman method (ZM) the main objective function cx is addedto the constraints as a fuzzy goal and the corresponding linear programming (LP)problem w...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010